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Abstract. We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright
solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using
variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized
fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion inter-
actions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction.
We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton
trains. These fermionic solitons can be formed and studied in laboratory with present technology.

PACS. 03.75.Ss Degenerate Fermi gases – 05.45.Yv Solitons

Recent observations [1–4] and associated experimental [5–
7] and theoretical [8–12] studies of a degenerate Fermi gas
(DFG) by sympathetic cooling in the presence of a sec-
ond boson or fermion component suggest the possibility of
soliton formation. Apart from the observation of a DFG in
the following degenerate boson-fermion mixtures (DBFM)
6,7Li [3], 23Na–6Li [4] and 87Rb–40K [5,6], there have been
studies of degenerate spin-polarized fermion-fermion mix-
tures (DFFM) 40K–40K [1] and 6Li–6Li [2].

Bright solitons in a Bose-Einstein condensate (BEC)
are formed due to an attractive nonlinear atomic inter-
action [13]. As the interaction in a pure DFG at short
distances is repulsive due to strong Pauli blocking, there
cannot be bright solitons in a DFG. However, it has been
demonstrated [14,15] that bright solitons can be formed
in a DBFM in the presence of a sufficiently strong boson-
fermion attraction which can overcome the Pauli repulsion
among identical fermions.

We demonstrate the formation of stable fermionic
bright solitons in a DFFM for a sufficiently attractive in-
terspecies fermion-fermion interaction. In a DFFM, the
coupled system can lower its energy by forming high den-
sity regions, the bright solitons, when the attraction be-
tween the two types of fermions is large enough to over-
come the Pauli repulsion among identical fermions. We
use a coupled time-dependent mean-field-hydrodynamic
model for a DFFM and consider the formation of axially-
free localized bright solitons in a quasi-one-dimensional
cigar-shaped geometry using numerical and variational so-
lutions. The present model is inspired by the success of a
similar model suggested recently by the present author
in the investigation of collapse [12] and bright [15] and
dark [16] solitons in a DBFM. We study the condition
of modulational instability of a constant-amplitude solu-
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tion in this model and demonstrate the possibility of the
formation of bright solitons. We also present a numeri-
cal stability analysis of these robust bright solitons and
consider the formation of a soliton train in a DFFM by
a large sudden jump in the interspecies fermion-fermion
scattering length near a Feshbach resonance, experimen-
tally observed in both 6Li–6Li and 40K–40K [17].

We use a simplified mean-field-hydrodynamic La-
grangian for a DFG used successfully to study a DBFM
[12,15,16]. The virtue of the mean-field model over a
microscopic description is its simplicity and predictive
power. To develop a set of time-dependent mean-field-
hydrodynamic equations for the interacting DFFM, we
use the following Lagrangian density [12,15]

L = g12n1n2 +
2∑

j=1

i

2
�

[
ψj
∂ψj

∗

∂t
− ψj

∗ ∂ψj

∂t

]

+
2∑

j=1

(
�

2|∇rψj |2
6mj

+ Vj(r)nj +
3
5
Ajn

5/3
j

)
, (1)

where j = 1, 2 represents the two components, ψj the
complex probability amplitude, nj = |ψj |2 the real proba-
bility density, ∗ denotes complex conjugate, mj the mass,
Aj = �

2(6π2)2/3/(2mi), the interspecies coupling g12 =
2π�

2a12/mR with mR = m1m2/(m1 + m2) the reduced
mass, and a12 the interspecies fermion-fermion scattering
length. The number of fermionic atoms Nj is given by∫
drnj(r) = Nj. The trap potential with axial symme-

try is Vj(r) = 1
2mjω

2(ρ2 + ν2z2) where ω and νω are
the angular frequencies in the radial (ρ) and axial (z) di-
rections with ν the anisotropy. The interaction between
identical intra-species fermions in spin-polarized state is
highly suppressed due to Pauli blocking terms 3Ajn

5/3
j /5

and has been neglected in equation (1). The kinetic energy
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Fig. 1. (Color online) The solitons |φj(y)| of equation (3) vs. y
(in dimensionless units) for N1 = 44, N2 = 56, a12 = −0.3 nm,
while N11 ≈ 159, N12 ≈ 203, N21 ≈ 160, and N22 ≈ 187. The
variational (ϕv) and numerical (ϕ) solutions of equation (4)
for N1 = N2 = 50 are also shown.

terms �
2|∇rψj |2/(6mj) in equation (1) contribute little to

this problem compared to the dominating Pauli-blocking
terms. However, its inclusion leads to an analytic solution
for the probability density everywhere [15].

With the Lagrangian density (1), the following Euler-
Lagrange equations can be derived in a straight-forward
fashion [12,15]:

[
i�
∂

∂t
+

�
2∇2

r

6mj
− Vj −Ajn

2/3
j − g12nk

]
ψj = 0, (2)

where j �= k = 1, 2. This is essentially a time-dependent
version of a similar time-independent model used recently
for fermions [10]. For large nj , both lead to the Thomas-
Fermi result nj = [(µj − Vj)/Aj ]3/2 [10,12] with µj the
chemical potential. As the bright solitons of this rapid
note are stationary states, they could be obtained by the
time-independent approach used in reference [10]. The sta-
tionary approach of reference [10] has passed rigorous tests
of comparison of the hydrodynamic-mean-field spectra of
localized fermions with the spectra calculated in the col-
lisionless regime within the random-phase approximation
(RPA). The results of mixing-demixing and collapse of the
hydrodynamic approach are in agreement with the RPA
analysis [11]. The detailed behavior of collective excita-
tion of trapped fermions has also been found to agree with
that obtained by an RPA analysis [10]. For a description
of stationary solitons (e.g., of Fig. 1) we could have used
the well-established formulation of reference [10] to obtain
identical results, as the present time-dependent dynami-
cal description and the time-independent approach of [10]
yield identical results for stationary states. However, we
shall be using the present time-dependent dynamical for-
mulation to study the nonequilibrium generation soliton
trains, in addition.

We reduce three-dimensional equations (2) to a mini-
mal quasi-one-dimensional form in a cigar-shaped geom-
etry with ν � 1, where the radial motion is frozen in
the ground state of the harmonic trap and the dynam-
ics is carried by the axial motion. For radially-bound and
axially-free solitons we eventually set ν = 0. Following ref-
erence [15] this reduction can be done in a straight-forward

fashion and we quote the final results here:
[
i
∂

∂τ
+

∂2

∂y2
−Njj |φj |4/3 +Njk |φk|2

]
φj(y, τ) = 0, (3)

where φj , j �= k = 1, 2 represents the two solitons, τ =
tω/2, y = z/l, Njj = 9(6πNj)2/3/5, Njk = 12|a12|Nk/l,

l =
√

�/(ωm), with m = 3m1 = 3m2. Here we em-
ploy equal-mass fermions, a negative a12 corresponding
to attraction, and normalization

∫ ∞
−∞ |φj(y, τ)|2dy = 1.

In equations (3) a sufficiently strong attractive fermion-
fermion coupling Njk|φk|2(j �= k) can overcome the Pauli
repulsion Njj |φj |4/3 and form bright solitons.

Now we perform a stability analysis of constant-
amplitude solutions of equations (3) and study the pos-
sibility of generation of solitons in the symmetric case:
N1 = N2, when φ1 = φ2 ≡ ϕ and these equations re-
duce to

[
i
∂

∂τ
+

∂2

∂y2
− β |ϕ|4/3 + γ |ϕ|2

]
ϕ(y, τ) = 0, (4)

where β = N11 = N22 and γ = N12 = N21. We consider
the constant-amplitude solution [18] ϕ0 = A0 exp(iδ) ≡
A0 exp[i(γA2

0τ−βA4/3
0 τ)] of equation (4) under small per-

turbation: ϕ = (A0 + A) exp(iδ), where A = A(y, τ) and
A0 the amplitude. Substituting this perturbed solution in
equation (4), and for small perturbations retaining only
the linear terms in A we get

i
∂A

∂τ
+
∂2A

∂y2
− 2

3
βA

4/3
0 (A+A∗) + γA2

0(A+A∗) = 0. (5)

We consider the plane-wave perturbation A(y, τ) =
A1 cos(Kτ−Ωy)+iA2 sin(Kτ−Ωy) in equation (5). Then
separating the real and imaginary terms and eliminating
A1 and A2 we obtain the dispersion relation K = ±Ω[Ω2

−(2γA2
0 − 4βA4/3

0 /3)]1/2. For stability of the plane-wave
perturbation, K has to be real. This happens for 2γA2

0 <

4βA4/3
0 /3 or γA2/3

0 < 2β/3. However,K can become imag-
inary for γA2/3

0 > 2β/3 and the plane-wave perturbations
can grow exponentially with time τ . This is the domain of
modulational instability of a constant-intensity solution,
signaling a tendency of spatially localized bright solitons
to appear. We also performed this analysis in the case of
non-symmetric coupled equations (3) and quote the result
here. The condition for instability is N12N21A

2/3
10 A

2/3
20 >

4N11N22/9 [19], where A10 and A20 are the amplitudes of
the two solutions.

Next we present a variational analysis of equation (4)
based on the normalized Gaussian trial wave function [20]
ϕv(y, τ) =

√
1/[a(τ)

√
π] exp[−y2/{2a2(τ)} + ib(τ)y2/2],

where a is the width and b the chirp. The Lagrangian
density for equation (4) is the one-term version of equa-
tion (1), which is evaluated with this trial function and
the effective Lagrangian L =

∫ ∞
−∞ L(ϕv)dy becomes

L =
a2

4

(
ḃ+

2
a4

+ 2b2 −
√

2√
π

γ

a3
+

12
√

3
5
√

5
β

π1/3a8/3

)
. (6)
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Fig. 2. (Color online) The propagation
of fermionic solitons (a) |φ1(z, t)| and (b)
|φ2(z, t)| of Figure 1 vs. z and t. At t = 100 ms
(marked by arrows) the bright solitons are set
into small breathing oscillation by suddenly
changing N1 = 44 and N2 = 56 to N2 = 44,
N1 = 56.
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Fig. 3. (Color online) The propagation
of fermionic solitons (a) |φ1(z, t)| and (b)
|φ2(z, t)| vs. z and t. At t = 100 ms (marked
by arrows) the same initial solitons of Figure 1
are set into small breathing oscillation by sud-
denly changing φ1 → 1.1φ1 and φ2 → 0.9φ2.

The variational Euler-Lagrangian equations for a and b
can then be written and solved in a standard fashion [20]
to yield the differential equation for the width: d2a/dτ2 =
[4−aγ√2/π+a4/3(8β

√
3)/(5π1/3

√
5)]/a3. The variational

result for width a follows by setting the right hand side
of this equation to zero, from which the variational profile
for the soliton can be obtained [20].

We solve equations (3) for bright solitons numer-
ically using a time-iteration method based on the
Crank-Nicholson discretization scheme elaborated in ref-
erence [21] using time step 0.0002 and space step 0.015.
We perform a time evolution of equations (3) introduc-
ing an harmonic oscillator potential y2 and setting the
nonlinear terms to zero, and starting with the eigenfunc-
tion of the linear harmonic oscillator problem. The extra
harmonic oscillator potential, which will be set equal to
zero in the end, only aids in starting the time evolution
with an exact analytic form. During the time evolution the
nonlinear terms are switched on and the harmonic oscilla-
tor potential is switched off slowly and the time evolution
continued to obtain the final converged solutions.

In our numerical study we take l = 1 µm and consider
a DFFM consisting of two electronic states of 40K atoms.
This corresponds to a radial trap of frequency ω ≈ 2π ×
83 Hz. Consequently, the unit of time is 2/ω ≈ 4 ms.

First we solve coupled equations (3) with N1 = 44,
N2 = 56, and a12 = −0.3 nm. The soliton profile in
this case is shown in Figure 1, where we also plot the
variational and numerical solutions of equation (4) for
N1 = N2 = 50. In this case in equation (4) β ≈ 173 and
γ ≈ 181.6 leading to a variational width a ≈ 0.043 and
a variational soliton profile ϕv ≈ 3.62 exp(−270y2). The
variational result agrees well with the numerical solutions.

At this stage it is pertinent to see if Friedel oscillations
[22] of density of the localized fermions are small so that
the effective description of the solitons is valid. An one-
dimensional degenerate Fermi gas of N atoms filled up to
Fermi sea has a spatial extension 2LF = l

√
2N − 1, where

l is a measure of confinement [23]. In the presence of an
harmonic trap, l is the harmonic trap length and is smaller
than the spatial extension of the confined fermions. In
the case of the soliton of Figure 2, a typical measure of
l could be 0.05 µm so that for about 50 fermions con-
sidered here 2LF = 0.5 µm. The Fermi momentum of
an one-dimensional Fermi gas is kF = πN/(2LF ) [23].
The spatial wave-length of Friedel oscillation is [23] λ =
π/kF = 2LF/N ≈ 0.01 µm, much smaller than the soli-
ton width of 0.1 µm. This qualitative analysis resulting in
small Friedel oscillation supports the effective description
used in this rapid note for a DFFM.

To test the robustness of these solitons we inflicted
different perturbations on them and studied the resultant
dynamics numerically. First, after the formation of the
solitons we suddenly changed the fermion numbers from
N1 = 44 and N2 = 56 to N1 = 56, N2 = 44 at time
t = 100 ms. This corresponds to a sudden change of non-
linearities from N11 ≈ 159, N12 ≈ 203, N21 ≈ 160, and
N22 ≈ 187 to N11 ≈ 187, N12 ≈ 160, N21 ≈ 203, and
N22 ≈ 159. The resultant dynamics is shown in Figures 2a
and 2b. Due to the sudden change in nonlinearities the
fermionic bright solitons are set into stable non-periodic
small-amplitude breathing oscillation. Next on the same
initial solitons of Figure 2, at t = 100 ms, we suddenly
inflict the perturbation φ1 → 1.1φ1 and φ2 → 0.9φ2 and
follow numerically the time evolution. The result of sim-
ulation is shown in Figures 3a and 3b. We find that the
solitons again continue non-periodic breathing oscillation
and stabilize at large times. We also gave a small displace-
ment between the centers of these solitons. We find that
after oscillation and dissipation the solitons again come
back to the stable configuration.

During the time evolution of equations (3) if the non-
linearities are changed by a small amount or changed
slowly, usually one gets a single stable soliton when the
final nonlinearities are appropriate. However, if the nonlin-
earities are jumped suddenly by a large amount, a soliton
train can be obtained as in the experiment with BEC [13].
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Fig. 4. (Color online) Soliton trains of two
and three solitons formed upon removing the
harmonic trap y2 and jumping the nonlinear-
ities at t = 0 from Njj ≈ 173, Njk ≈ 145,
k �= j = 1, 2 to (a) Njj ≈ 173, Njk ≈ 273, and
to (b) Njj ≈ 173, Njk ≈ 309, respectively.

To illustrate this we consider the solution of equations (3)
with nonlinearities Njj ≈ 173 and Njk ≈ 145, j �= k = 1, 2
and harmonic oscillator trap y2. After the formation of
the solitons we suddenly jump the off-diagonal nonlineari-
ties to Njk ≈ 273 and also switch off the harmonic trap at
time t = 0. Then after some initial noise and dissipation
the time evolution of equations (3) generates two slowly
receding bright solitons of each component as shown in
Figure 4a. More solitons can be generated when the jump
in the nonlinearities is larger. In Figure 4b we show the
generation of three slowly receding solitons of each compo-
nent upon a sudden jump of the off-diagonal nonlinearities
to Njk ≈ 309 from the same initial state as in Figure 4a.
The formation of soliton trains from a stable initial state
is due to modulational instability [18]. The sudden jump
in the off-diagonal nonlinearities could be effected by a
jump in the interspecies scattering length a12 obtained by
manipulating a background magnetic field near a fermion-
fermion Feshbach resonance [17].

In conclusion, we use a coupled mean-field-
hydrodynamic model for a DFFM to study the formation
of bright solitons and soliton trains in a quasi-one-
dimensional geometry by numerical and variational
methods. We find that an attractive interspecies interac-
tion can overcome the Pauli blocking repulsion and form
fermionic bright solitons in a DFFM. The stability of
the present solitons is demonstrated numerically through
their sustained breathing oscillation initiated by a sudden
small perturbation. We also illustrate the creation of
soliton trains upon a sudden large jump in off-diagonal
nonlinearities. Bright solitons and soliton trains have been
created experimentally in attractive BECs in the presence
of a radial trap only without any axial trap [13]. In view
of this, fermionic bright solitons and trains can be created
in laboratory in a DFFM in a quasi-one-dimensional
configuration. Here we used a set of mean-field equations
for the DFFM. A proper treatment of a DFG or DFFM
should be done using a fully antisymmetrized many-body
Slater determinant wave function [8,14] as in the case of
scattering involving many electrons [24]. However, in view
of the success of a fermionic mean-field-hydrodynamic
model in studies of collapse [12], bright [15] and dark
solitons [16] in a DBFM, and of mixing-demixing [25] and
black solitons [26] in a DFFM, we do not believe that
the present study on bright solitons in a DFFM to be so
peculiar as to have no general validity.

The work is supported in part by the CNPq and FAPESP of
Brazil.
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